
物理直觉不再是人类专属?LeCun等新研究揭示AI可如何涌现出此能力
物理直觉不再是人类专属?LeCun等新研究揭示AI可如何涌现出此能力在当今的 AI 领域,图灵奖得主 Yann LeCun 算是一个另类。即便眼见着自回归 LLM 的能力越来越强大,能解决的任务也越来越多,他也依然坚持自己的看法:自回归 LLM 没有光明的未来。
在当今的 AI 领域,图灵奖得主 Yann LeCun 算是一个另类。即便眼见着自回归 LLM 的能力越来越强大,能解决的任务也越来越多,他也依然坚持自己的看法:自回归 LLM 没有光明的未来。
随着金融机构和专业人士越来越多地将大语言模型(LLMs)纳入其工作流程中,金融领域与人工智能社区之间依然存在显著障碍,包括专有数据和专业知识的壁垒。本文提出了 FinRobot,一种支持多个金融专业化人工智能智能体的新型开源 AI 智能体平台,每个代理均由 LLM 提供动力。
「慢思考」(Slow-Thinking),也被称为测试时扩展(Test-Time Scaling),成为提升 LLM 推理能力的新方向。近年来,OpenAI 的 o1 [4]、DeepSeek 的 R1 [5] 以及 Qwen 的 QwQ [6] 等顶尖推理大模型的发布,进一步印证了推理过程的扩展是优化 LLM 逻辑能力的有效路径。
尽管多模态大语言模型(MLLM)在简单任务上最近取得了显著进展,但在复杂推理任务中表现仍然不佳。费曼的格言可能是这种现象的完美隐喻:只有掌握推理过程的每一步,才能真正解决问题。然而,当前的 MLLM 更擅长直接生成简短的最终答案,缺乏中间推理能力。本篇文章旨在开发一种通过学习创造推理过程中每个中间步骤直至最终答案的 MLLM,以实现问题的深入理解与解决。
近日,资深机器学习研究科学家 Cameron R. Wolfe 更新了一篇超长的博客文章,详细介绍了 LLM scaling 的当前状况,并分享了他对 AI 研究未来的看法。
27 页综述,354 篇参考文献!史上最详尽的视觉定位综述,内容覆盖过去十年的视觉定位发展总结,尤其对最近 5 年的视觉定位论文系统性回顾,内容既涵盖传统基于检测器的视觉定位,基于 VLP 的视觉定位,基于 MLLM 的视觉定位,也涵盖从全监督、无监督、弱监督、半监督、零样本、广义定位等新型设置下的视觉定位。
「除了 Claude、豆包和 Gemini 之外,知名的闭源和开源 LLM 通常表现出很高的蒸馏度。」这是中国科学院深圳先进技术研究院、北大、零一万物等机构的研究者在一篇新论文中得出的结论。
对 LLM 来说,Pre-training 的时代已经基本结束了。视频模型的 Scaling Law,瓶颈还很早。具身智能:完全具备人类泛化能力的机器人,在我们这代可能无法实现
Grok AI 最近网页版刚刚上线。我看到不少人都在比较 Grok 对标 ChatGPT 等等 LLM 大模型的研究和生成能力。我想说,背靠 X (前推特)数据库的 Grok AI,最好的使用方式难道不是实时监测全球媒体热点吗?
自适应 LLM 反映了神经科学和计算生物学中一个公认的原理,即大脑根据当前任务激活特定区域,并动态重组其功能网络以响应不断变化的任务需求。